184 research outputs found

    Research Progress on the Quality Formation Mechanism of Dry-Aged Meat

    Get PDF
    Dry-aging is the aerobic aging process where meat carcasses or primal cuts are hanged and aged for a period of time (28 to 55 days, or even longer) under specific environmental conditions of temperature (0–4 ℃), relative humidity (61%–85%), and air flow (0.5–2.0 m/s). Dry-aging in a breathable bag, dry-aging combined with ultraviolet irradiation treatment, and stepwise dry/wet-aging have been successively developed. Due to dehydration during dry-aging, the surface of meat shrinks to produce a hard ‘crust’, resulting in significant mass loss and trim loss. However, compared with wet-aging, dry-aging can significantly enhance meat flavor characteristics, imparting a strong ‘dry-aged flavor’ and unique roasted beef-like, roasted nutty and buttery aromas to aged meat. Dry-aging can be used effectively to improve the eating quality and economic value of low-marbled beef. In this paper, the key parameters of dry-aging are reviewed, the potential mechanism by which dry-aging improves meat quality, especially flavor, is discussed. Future prospects for the application and development of dry-aging are discussed as well. This review will provide theoretical support for the development of the meat industry and for exploring the market for high-quality meat

    Recent Advances in Electrospun Sustainable Composites for Biomedical, Environmental, Energy, and Packaging Applications.

    Get PDF
    Electrospinning has gained constant enthusiasm and wide interest as a novel sustainable material processing technique due to its ease of operation and wide adaptability for fabricating eco-friendly fibers on a nanoscale. In addition, the device working parameters, spinning solution properties, and the environmental factors can have a significant effect on the fibers\u27 morphology during electrospinning. This review summarizes the newly developed principles and influence factors for electrospinning technology in the past five years, including these factors\u27 interactions with the electrospinning mechanism as well as its most recent applications of electrospun natural or sustainable composite materials in biology, environmental protection, energy, and food packaging materials

    Impact of Ultra-Low Interfacial Tension on Enhanced Oil Recovery of Ultra-Low Permeability Reservoir

    Get PDF
    Ultra-low permeability reservoirs have the characteristics of complex pore throat structure, generally higher injection pressure and lower oil recovery. By means of casting thin sections, pore structure of selected ultra-low permeability core was surveyed. The core was classified into low porosity, low permeability and without natural fractures. Vast majority of throats of the core varied in width from 2.5 μm to 15 μm. Core displacement experiments showed that surfactant flooding could have certain effect of reducing injection pressure and enhancing oil recovery. When interfacial tension was 5.93×10-2 mN/m, decompression rate reached 7.65%, and recovery was improved by 4.09%. And when interfacial tension was 4.9×10-5 mN/m, decompression rate reached 25%, and recovery was improved by 11.6%. The lower interfacial tension is, the better the effect of reducing injection pressure is, and the higher the extent of enhancing oil recovery is. In general, surfactants have a great application prospect on the oil field development of ultra-low permeability reservoir, and the interfacial tension should be reduced as far as possible.Key words: Low permeability; Surfactant; Interfacial tension; Emulsion; Enhancing oil recover

    Severe loneliness and isolation in nursing students during Covid-19 lockdown: a phenomenological study

    Get PDF
    In 2022, COVID-19 continued to spread across the globe, and to stop the spread of the virus and protect people’s health, universities across China continued to remain in a lockdown state. Loneliness is an important topic among college students, and the coronavirus pandemic has exacerbated loneliness. This prolonged school lockdown was unprecedented and it caused severe social isolation and emotional loneliness for students. Few people know how nursing students experience loneliness and find a way through their experience. This qualitative phenomenological study was conducted to reveal the lived experiences of nursing students who indicated COVID-19 lockdown-related loneliness in a previous quantitative survey. We performed 20 semi-structured interviews with nursing students aged 19–23 yrs during their lockdown (April 2022 to June 2022). Our research applied Colaizzi’s seven-step data analysis processes to reveal shared patterns in terms of how nursing students experienced lockdown and found the following four themes: emotional challenges associated with loneliness; causes of loneliness; positive and negative motivation to learn; and accepting solitude and reconstructing real life

    FoxG1 Directly Represses Dentate Granule Cell Fate During Forebrain Development

    Get PDF
    The cortex consists of 100s of neuronal subtypes that are organized into distinct functional regions; however, the mechanisms underlying cell fate determination remain unclear. Foxg1 is involved in several developmental processes, including telencephalic patterning, cell proliferation and cell fate determination. Constitutive disruption of Foxg1 leads to the transformation of cortical neurons into Cajal-Retzius (CR) cells, accompanied by a substantial expansion of the cortical hem through the consumption of the cortex. However, rather than the induction of a cell fate switch, another group has reported a large lateral to medial repatterning of the developing telencephalon as the explanation for this change in cell type output. Here, we conditionally disrupted Foxg1 in telencephalic progenitor cells by crossing Foxg1fl/fl mice with Nestin-CreERTM mice combined with tamoxifen (TM) induction at distinct developmental stages beginning at E10.5 to further elucidate the role of FoxG1 in cell fate determination after telencephalon pattern formation. The number of dentate gyrus (DG) granule-like cells was significantly increased in the cortex. The increase was even detected after deletion at E14.5. In vivo mosaic deletion and in vitro cell culture further revealed a cell-autonomous role for FoxG1 in repressing granule cell fate. However, the cortical hem, which is required for the patterning and the development of the hippocampus, was only slightly enlarged and thus may not contribute to the cell fate switch. Lef1 expression was significantly upregulated in the lateral, cortical VZ and FoxG1 may function upstream of Wnt signaling. Our results provide new insights into the functions of FoxG1 and the mechanisms of cell fate determination during telencephalic development

    Decreased Glycogenolysis by miR-338-3p Promotes Regional Glycogen Accumulation Within the Spinal Cord of Amyotrophic Lateral Sclerosis Mice

    Get PDF
    Metabolic dysfunction is a hallmark of age-related neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). But the crosstalk between metabolic alteration and disease progression in ALS is still largely unknown. Glycogen, a branched polymer of glucose residues, is universally recognized as the energy reserve of the central nervous system (CNS), where its aberrant accumulation instigates neurodegeneration. Glycogen was reported to be accumulated in both CNS and visceral organs of SOD1G93A mice, a well-known ALS model, and contributes to the pathological process of ALS. However, the accumulative patterns and mechanisms are not well elucidated. Here, we provide extensive evidence to demonstrate that glycogen accumulated in the lumbar spinal cord of ALS mice along with the disease progression, but not in the motor cortex. This regional accumulation of glycogen was caused by deteriorated glycogenolysis, which was triggered by decreased glycogen phosphorylase, brain form (PYGB). Moreover, miR-338-3p, an elevated miRNA in the spinal cord of SOD1G93A mice, directly targeted PYGB and was responsible for the decreased glycogenolysis and subsequent glycogen accumulation. Our work is helpful for better understanding of of of metabolic dysfunctions in ALS and provides novel targets for the therapeutic intervention in the future

    Combined model of radiomics and clinical features for differentiating pneumonic-type mucinous adenocarcinoma from lobar pneumonia: An exploratory study

    Get PDF
    PurposeThe purpose of this study was to distinguish pneumonic-type mucinous adenocarcinoma (PTMA) from lobar pneumonia (LP) by pre-treatment CT radiological and clinical or radiological parameters.MethodsA total of 199 patients (patients diagnosed with LP = 138, patients diagnosed with PTMA = 61) were retrospectively evaluated and assigned to either the training cohort (n = 140) or the validation cohort (n = 59). Radiomics features were extracted from chest CT plain images. Multivariate logistic regression analysis was conducted to develop a radiomics model and a nomogram model, and their clinical utility was assessed. The performance of the constructed models was assessed with the receiver operating characteristic (ROC) curve and the area under the curve (AUC). The clinical application value of the models was comprehensively evaluated using decision curve analysis (DCA).ResultsThe radiomics signature, consisting of 14 selected radiomics features, showed excellent performance in distinguishing between PTMA and LP, with an AUC of 0.90 (95% CI, 0.83–0.96) in the training cohort and 0.88 (95% CI, 0.79–0.97) in the validation cohort. A nomogram model was developed based on the radiomics signature and clinical features. It had a powerful discriminative ability, with the highest AUC values of 0.94 (95% CI, 0.90–0.98) and 0.91 (95% CI, 0.84–0.99) in the training cohort and validation cohort, respectively, which were significantly superior to the clinical model alone. There were no significant differences in calibration curves from Hosmer–Lemeshow tests between training and validation cohorts (p = 0.183 and p = 0.218), which indicated the good performance of the nomogram model. DCA indicated that the nomogram model exhibited better performance than the clinical model.ConclusionsThe nomogram model based on radiomics signatures of CT images and clinical risk factors could help to differentiate PTMA from LP, which can provide appropriate therapy decision support for clinicians, especially in situations where differential diagnosis is difficult
    • …
    corecore